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Chaos from Hopf bifurcation in a fluid flow experiment
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Results of an experimental study of a Hopf bifurcation with broken translation symmetry that organizes
chaotic homoclinic dynamics from™® torus in a fluid flow as a direct consequence of physical boundaries are
presented. It is shown that the central features of the theory of Hopf bifurcatio2ips@mmetric systems
where the translation symmetry is broken are robust and are appropriate to describe the appearance of modu-
lated waves, homoclinic bifurcation, Takens-Bogdanov point, and chaotic dynamics in a fluid flow experiment.
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Ideas from low-dimensional dynamical systems have beein the presence of imperfections which break the translation
very fruitful in order to understand the appearance of comsymmetry[17—19. As a consequence of broken translational
plex behavior in spatial extended nonlinear systéis3). symmetry the Hopf bifurcation does not only determine the
Chaotic dynamics often appears in such systems if a contraolution structure from the basic state but also predicts
parameter is increased from its critical value of the first bi-higher-order bifurcations away from the critical point in the
furcation from the basic state. Homoclinic bifurcations arenonlinear regime.
found to play a crucial role in the organization of low- Instead of traveling and standing waves in th@)3ym-
dimensional chaotic dynami¢d]. They arise from the merg- metric case only two types of standing wave solutions appear
ing of a period orbit with a saddle-point if a control param- of the basic state from a Hopf bifurcation with broken trans-
eter is varied and originate in the underlying local bifurcationlational symmetry. Secondary symmetry breaking bifurcation
structure of a nonlinear dynamical syst¢fj. Examples of to traveling wave-type solutions and Hopf bifurcation to
homoclinic orbits can be found in many nonlinear physicalmodulated wavesMW) occur from these standing waves.
systems, like, e.g., lasef8], chemical oscillator§7], elec- The MW form aT? torus of standing waves and a very-low-
tronic circuits[8], and fluid flows[9-13. In order to under- frequency modulation. Furthermore, a Takens-Bogdanov
stand the organization of the bifurcation structure of a spatiapoint and homoclinic and heteroclinic bifurcations also occur
extended nonlinear system an in-depth knowledge of thé the bifurcation structure. They are responsible for the ap-
properties of the first bifurcation from the basic state is crupearance of chaotic dynamics in the normal fdi20]. The
cial [1]. Symmetries and symmetry-breaking are important toonset of chaos may thus be considered as a direct conse-
determine the solution set close to such a bifurcation. Mathguence of the presence of symmetry-breaking imperfections
ematical models of a bifurcation in a spatial extended systenm a Hopf bifurcation with broken translational symmetry.
often assume translation symmetry. Accompanied with the In general it is not priori clear that the effect of physical
assumption of a reflection symmetry such a dynamical sysboundaries on the Hopf bifurcation in a fluid flow which is
tem is thus considered as being invariant undgt)@ymme-  governed by the Navier-Stokes equation correspond to that
try. In the case of Hopf bifurcation with @) symmetry ei- of a symmetry breaking imperfection term in the normal
ther left or right traveling waves or standing waves appeaform of the symmetric bifurcation.
from the basic statfl4]. Theoretical workj21,22 and experimental investigations

A mathematical model of a bifurcation with(®) symme-  [23,24 on binary mixture convection and experimental stud-
try which results from the assumption of translational sym-ies on nematic liquid crystals under low-frequency ac volt-
metry does not reflect necessarily all properties of its physiage [25] revealed interesting complex dynamics close to a
cal representation due to the finite spatial extend of thedopf bifurcation from which theoretically traveling wave so-
physical systeniil5]. Therefore a realistic model of a physi- lutions occur. In these systems it is found that nonlinear com-
cal system representing a Hopf bifurcation witli2Dsym-  petition between traveling waves propagating in opposite di-
metry has to cope with the effect of broken translationalrection is responsible for the appearance of complex flow
symmetry. states, like, e.g., “blinking states” or irregular “repeated tran-

Bifurcations with broken symmetries due to imperfectionssients.”
have been successfully modeled by adding symmetry- The aim of this work is to examine whether chaos arises
breaking terms to the normal form of the symmetric bifurca-from a Hopf bifurcation with broken translation symmetry in
tion [16]. Examples arise from both imperfect local and im-an experimental system due to the presence of physical
perfect global bifurcations in fluid flows with reflection boundaries.
symmetry(see, e.9.[3,9]). The system we have chosen is counter-rotating Taylor-

According to bifurcation theory the normal form of a Couette flow which is the flow of a viscous liquid in the gap
Hopf bifurcation with @2) symmetry is qualitatively altered between two concentric rotating cylinders. It is one of the
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“classical” hydrodynamic systems for the study of bifurca-
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tion with symmetry and chaos. Under the assumption of in- ;
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finite axial height the basic laminar Couette flow is invariant )
under the group @) X SO(2) [26,27]. For sufficiently high (b) 5
rates of counter-rotating cylinders spiral vortices occur as the g
result from a Hopf bifurcation in laminar Couette flow %

[28—-3Q. Spiral vortices are traveling waves in axial and ro- (c)
tating waves in azimuthal direction. Experimentally they

have been observed first by Snydad] and later studied to :
a larger extend by Andereak al. [32], Tagget al.[33], and 0 L

SCITU(;Z" agllgj Pf',? tﬁ (34]'bAX'a”3é stan?jlnbg \_/rvave Isogluthns, FIG. 1. Axial distributions of axial velocity ofa) standing wave
called “ribbons,” have been observed by Tagaal. [35] I g\ =73 Re=112.2,Rg=-110), (b) modulated wave MW(T

the nonlir_lear regime and recently by I__cfingenbe!rgll_. [36] _ =7.3,Re=115.3,Rg=-110, and () traveling wave SPI(T
as the primary pattern from a supercritical Hopf bifurcation_- 5 Re=118.2,Rg=-110.

in the basic flow.

Thg experlmental Setup Of. the Taqur-Cougtte system usegharacteristic of the flow state is very similar to that of the
for this study consists of a viscous fluid confme.d n the gapstanding wave flow but with a crucial difference arising in
between two independently rotating concentric cyllnders.[he axial middle of the cylinder. Here, the node that is

The inner cylinder is machined from stainless steel having %resent in the case of standing waves has disappeared. The

rad:jus ]?fr‘:(12t150|T0'01F1E]’dWh:Ie the _;)huter cyolll_nder f's velocity distribution is broadened. The broadening arises in
made from optically poliShed giass with a radius ©f — ,q gistripution since a spatio-temporal modulation occurs in

:_(25.00_10._01mn_1. As a working fluid a silicon oil with the 0 {151 The flow state is thus labeled modulated waves
kinematic viscosityy=10.2 cSt is used. The temperature Of(MW).

the fluid is thermostatically controlled t®4.00+0.0}1 °C. A time series of the axial velocity of MW recorded 1.2

At top and bottom the fluid is confined by end plates which,m above the axial midplane and at a distance of 1.5 mm
are held fixed in the laboratory frame. The distance betweegfqm the inner cylinder is shown in Fig.(®. In order to

the plates defines the axial heigbtof the flow which is \isyalize the fast dynamics of MW which corresponds to
adjustable within an accuracy of 0.01 mm. Geometric paramgianding waves a single period of the slow oscillation plotted
eters are the aspect raio=L/d, with gap widthd=r,—ri, i (g) is depicted in Fig. @). A time-delay reconstruction of
and the radius ratigy=r;/r,. The radius ratio is held _flxed 10 the attractor from time serigb) which is shown in Fig. &)
7=0.5 for all measurements and the maximum height of the,nq 5 poincaré section from an attractor reconstructed from
apparatus id.=250 mm which correspond to @ maximum (ine seriega) which is depicted in(d) demonstrate the qua-

aspect ratid'=20. As control parameters serve the Reynoldssiperiodic dynamics of MW, Thus the flow evolves dynami-
number of the inner(i) and the outer(o) Cy“”derj R€  cally on aT?torus. The time delay=1.1 s is optimized with
=2mdr; o(); o/ v, where(); , denote the angular velocity of the

inner (i) and the outefo) cylinder, respectively. We utilize
laser Doppler velocimetryLDV) for measurements of the (a)
flow velocity.

Standing waves have been found to supersede spiral vot
tices as the first time-periodic pattern appearing in counter-
rotating Taylor-Couette flow from a Hopf bifurcation for suf-
ficiently small aspect ratio[19,3§. An axial velocity (b)
distribution of a standing wave solution measured at7.3
for Rg=112.2 and Rg=-110 is shown Fig. ®). The nodal
structure in the distribution provides a clear evidence for a
standing wave pattern. A detailed description of this flow
state is given irf36]. In the nonlinear regime away from the
critical Reynolds number spiral vortices appear. As an ex—(c)
ample the axial velocity distribution of a spiral vortex flow
measured atl’'=7.3,Re=118.2, and Rg=-110 is repre-
sented in Fig. (c). Due to the traveling wave character of
spiral vortices the velocity distribution is almost featureless
as shown in Fig. ) and described in detail by Schulz and

Pfister [34] Splral vortices are thus Clearly diStinguiShab|e FIG. 2. (a) Axial Ve|0city of a modulated wave measured 1.2
from the standing waves. mm above the axial midplane of the systeml'at7.3,Rg=-110

The axial velocity distribution of a novel flow state is and Re=114.5;(b) a single period of time series plotted (@); (c)
depicted in Fig. Ib). It has been measured for a Reynoldsquasiperiodic attractor reconstructed from time set®swith a
number within the interval between standing waves shown inime delayr=1.1 s;(d) Poincaré section of quasiperiodic attractor
Fig. 1(a) and spiral vortices shown in Fig(d). The spatial reconstructed from time seri¢a) with a time delayr=1.1s.
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FIG. 4. (a) Bifurcation diagram of modulated waves at7.3
FIG. 3. Bifurcation diagram measured &=7.3 and Rg and Rg=-110. (A), (%), and (O) represent the mean of the
=-110.(:), (&), (%), and(O) represent the mean of the maxima of axima of the axial velocity of SW MW, and SPI, respectively;
the axial velocity of BF, S\, MW, and SPI, respectively, recorded (p) modulation period of the standing wave for the same set of
1.2 mm above the axial midplane at a distance of 1.5 mm from thg,arameters.
inner cylinder.
standing waves as a result of a supercritical Hopf bifurcation
respect to the experimental time serf@3]. The axial mid- 4t Re=115.4. Such a behavior is in agreement with theory
plane does not allow an appropriate measurement of the dysf Hopf bifurcation with broken translation symmeti9].
namics on ar-torus since the amplitude of standing waves |t can be seen in Fig.(4) that theT2-torus of modulated
vanishes. The measurement off the midplane introduces afaves disappears above R4 15.8 and the flow undergoes a
anharmonic behavior of the low-frequency component in theyansition to spiral vortices. This has been indicated by small
time series as can be seen in Fig. 2. However, the lowzprows in Fig. 3 as well as in Fig(d). As shown in Fig. 3
frequency component is harmonic if measured directly in thene transition from spiral vortices to standing waves is hys-
axial midplane. Further flow visualization and LDV mea- teretic. Details on the nature of the transition from the
surements in the axial midplane reveal that the modulatiof2_tgrys formed by modulated wavédW) to spiral vortices
results from a time-periodic axial displacement of the wavespl) are represented in Fig.(H). It can be seen that the
pattern. _ ) ) oscillation period of MW increases significantly if the critical
A measurement of the bifurcation diagram of counter-Reynolds number is approached. This provides evidence for
rotating Taylor-Couette flow fod’=7.3 and Rg=-110 is  the appearance of a homoclinic bifurcations from MW. A
shown in Fig. 3. As a measure of the bifurcation the mean ohomoclinic bifurcation from a2-torus is an intrinsic part of
the maxima of the axial velocity is recorded at a distance othe theory of Hopf bifurcation with broken translation sym-
1.5 mm from the inner cylinder and 1.2 mm above the axialmetry. Note, that the experimental accuracy limits the closest
midplane. The transition from the basic floBF) to the {istance to the critical point.
standing wave$SWo) occurs via a supercriticial Hopf bifur-  Qualitatively similar bifurcation behavior has been found
cation, as shown in detail recently [I86]. Spiral vortices in the flow for different Reynolds number of the outer cylin-
(SP) exist in this control parameter regime only as a secondder and for different aspect ratio. In Fig. 5 the dependence of
ary flow. The transition from SPI to Sy\ccurs subcritically  pifurcation points on the aspect rafidn shown in a stability
at Rg=112.3 for decreasing Reynolds number as indicate@jiagram for Rg=-120. The critical points are obtained from
by an arrow in Fig. 3. bifurcation diagrams similar to that shown in Figs. 3 and 4.
For increasing Reynolds number modulated waW®/)  |n Fig. 5 the supercritical Hopf bifurcation from basic flow to
appear supercritically from standing waveéSWp). Since  swj is indicated by(®) while the supercritical Hopf bifur-
these waves are only stable within an interval of about oneation from SW to MW is depicted by(%). The quasiperi-
Reynolds number the region of modulated waves have beegdic flow stateMW) occurs only forl'<7.7 at Rg=—-120.
investigated in a detailed measurement plotted in Fig. 4. DeFor I'>7.7 SW, undergoes a direct transtion to SPI &t
spite the very small stability regime of modulated waveswith increasing Re There is strong evidence both from
(MW) evidence for a square-root behavior of the modulationtheory [17,19 and from previous experimental studies on
amplitude can be found in Fig(&. A power-law behavior is  standing wave§36] that this transition is due to a subcritical
estimated to (maxv,(t))=ve with e=(Rg-Reg)/R&.  symmetry-breaking bifurcation from SW The hysteretic
Moreover, the modulation period of the standing wave istransition from SPI is indicated by ) in Fig. 5. Merging of
finite at onset as depicted in Fig(bd. These experimental Hopf bifurcation() and subcritical symmetry-breaking bi-
results provide evidence that modulated waves appear froffurcation (CJ) indicates the existence of a Takens-Bogdanov
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FIG. 5. Stability diagram of flow at Re—-120: (®) supercriti-
cal Hopf bifurcation to SW, (%) supercritcal Hopf bifurcation to
MW; (OJ) subcritcal symmetry-breaking bifurcation from WoO)
homoclinic bifurcation( ¢ ) subcritcal bifurcation from SPI.

point atl'=7.7 in the flow. Such a codimension-2 point gives
rise to a heteroclinic bifurcation in a perfectfg-symmetric
and a homoclinic bifurcation in an imperfect experimental FIG. 6. (a) Axial velocity of a chaotic modulated wave mea-
system[5]. A Takens-Bogdanov point is an intrinsic part of sured 1.2 mm above the axial midplane of the systeml'at
the theory[17,19 and provides thus further evidence that the=7.3,Rg=-130 and Re=118.7;(b) low pass filtered time series;
transition form MW to SPI is due to a homoclinic bifucation (€) chaotic attractor reconstructed fraim; Poincaré section of cha-
at (O). otic attractor reconstructed from time seri@s
It has been found theoreticallj20] that chaotic ho-

moclinic dynamics also result from Hopf bifurcation with chaotic dynamics arise in a fluid flow from a Hopf bifurca-
broken translational symmetry. Such a chaotic flow state igion with broken translation symmetry. Thus the behavior of

found in the experiments in the vicinity of the homoclinic e fluid flow which is governed by the Navier-Stokes equa-
bifurcation. A time series of a chaotic flow at e-130 i  tjon can be succesfully modeled by imperfection terms in the
shown in Fig. €a). Chaos occurs in the modulation compo- normal form of the bifurcation even away from the first criti-
nent as indicated in a low-passed filtered version plotted iR Reynolds number in the nonlinear regime. We are there-
Fig. &b). Further evidence of the chaotic nature of the flowfgre aple to show that the theory of Hopf bifurcation with
is given in Fig. €c) by a reconstruction of an attractor from proken translational symmetry is robust and applicable to

the filtered time series. An optimal time delay 050 s is  Hopf pifurcations in a realistic fluid flow of finite spatial
used[37]. A Poincaré section of an attractor reconstructedgyiend.

from time series depicted ifa) with a time delayr=1.1 s is

shown in Fig. 6d). The structure indicates the existence ofa We thank W. Schumann and H. Horak for technical sup-

low-dimensional chaotic attractor. port. The authors acknowledge support from the “Deutsche
We have provided experimental evidence that modulatedrorschungsgemeinschaft).L. and G.P.: research Grant No.

waves, homoclinic bifurcation, Takens-Bogdanov point andPF 210/10-1; JA: SFB460
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