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Results of an experimental study of a Hopf bifurcation with broken translation symmetry that organizes
chaotic homoclinic dynamics from aT2 torus in a fluid flow as a direct consequence of physical boundaries are
presented. It is shown that the central features of the theory of Hopf bifurcation in O(2)-symmetric systems
where the translation symmetry is broken are robust and are appropriate to describe the appearance of modu-
lated waves, homoclinic bifurcation, Takens-Bogdanov point, and chaotic dynamics in a fluid flow experiment.
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Ideas from low-dimensional dynamical systems have been
very fruitful in order to understand the appearance of com-
plex behavior in spatial extended nonlinear systems[1–3].
Chaotic dynamics often appears in such systems if a control
parameter is increased from its critical value of the first bi-
furcation from the basic state. Homoclinic bifurcations are
found to play a crucial role in the organization of low-
dimensional chaotic dynamics[4]. They arise from the merg-
ing of a period orbit with a saddle-point if a control param-
eter is varied and originate in the underlying local bifurcation
structure of a nonlinear dynamical system[5]. Examples of
homoclinic orbits can be found in many nonlinear physical
systems, like, e.g., lasers[6], chemical oscillators[7], elec-
tronic circuits[8], and fluid flows[9–13]. In order to under-
stand the organization of the bifurcation structure of a spatial
extended nonlinear system an in-depth knowledge of the
properties of the first bifurcation from the basic state is cru-
cial [1]. Symmetries and symmetry-breaking are important to
determine the solution set close to such a bifurcation. Math-
ematical models of a bifurcation in a spatial extended system
often assume translation symmetry. Accompanied with the
assumption of a reflection symmetry such a dynamical sys-
tem is thus considered as being invariant under O(2) symme-
try. In the case of Hopf bifurcation with O(2) symmetry ei-
ther left or right traveling waves or standing waves appear
from the basic state[14].

A mathematical model of a bifurcation with O(2) symme-
try which results from the assumption of translational sym-
metry does not reflect necessarily all properties of its physi-
cal representation due to the finite spatial extend of the
physical system[15]. Therefore a realistic model of a physi-
cal system representing a Hopf bifurcation with O(2) sym-
metry has to cope with the effect of broken translational
symmetry.

Bifurcations with broken symmetries due to imperfections
have been successfully modeled by adding symmetry-
breaking terms to the normal form of the symmetric bifurca-
tion [16]. Examples arise from both imperfect local and im-
perfect global bifurcations in fluid flows with reflection
symmetry(see, e.g.,[3,9]).

According to bifurcation theory the normal form of a
Hopf bifurcation with O(2) symmetry is qualitatively altered

in the presence of imperfections which break the translation
symmetry[17–19]. As a consequence of broken translational
symmetry the Hopf bifurcation does not only determine the
solution structure from the basic state but also predicts
higher-order bifurcations away from the critical point in the
nonlinear regime.

Instead of traveling and standing waves in the O(2) sym-
metric case only two types of standing wave solutions appear
of the basic state from a Hopf bifurcation with broken trans-
lational symmetry. Secondary symmetry breaking bifurcation
to traveling wave-type solutions and Hopf bifurcation to
modulated waves(MW) occur from these standing waves.
The MW form aT2 torus of standing waves and a very-low-
frequency modulation. Furthermore, a Takens-Bogdanov
point and homoclinic and heteroclinic bifurcations also occur
in the bifurcation structure. They are responsible for the ap-
pearance of chaotic dynamics in the normal form[20]. The
onset of chaos may thus be considered as a direct conse-
quence of the presence of symmetry-breaking imperfections
in a Hopf bifurcation with broken translational symmetry.

In general it is nota priori clear that the effect of physical
boundaries on the Hopf bifurcation in a fluid flow which is
governed by the Navier-Stokes equation correspond to that
of a symmetry breaking imperfection term in the normal
form of the symmetric bifurcation.

Theoretical work[21,22] and experimental investigations
[23,24] on binary mixture convection and experimental stud-
ies on nematic liquid crystals under low-frequency ac volt-
age [25] revealed interesting complex dynamics close to a
Hopf bifurcation from which theoretically traveling wave so-
lutions occur. In these systems it is found that nonlinear com-
petition between traveling waves propagating in opposite di-
rection is responsible for the appearance of complex flow
states, like, e.g., “blinking states” or irregular “repeated tran-
sients.”

The aim of this work is to examine whether chaos arises
from a Hopf bifurcation with broken translation symmetry in
an experimental system due to the presence of physical
boundaries.

The system we have chosen is counter-rotating Taylor-
Couette flow which is the flow of a viscous liquid in the gap
between two concentric rotating cylinders. It is one of the
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“classical” hydrodynamic systems for the study of bifurca-
tion with symmetry and chaos. Under the assumption of in-
finite axial height the basic laminar Couette flow is invariant
under the group Os2dÃSOs2d [26,27]. For sufficiently high
rates of counter-rotating cylinders spiral vortices occur as the
result from a Hopf bifurcation in laminar Couette flow
[28–30]. Spiral vortices are traveling waves in axial and ro-
tating waves in azimuthal direction. Experimentally they
have been observed first by Snyder[31] and later studied to
a larger extend by Anderecket al. [32], Tagget al. [33], and
Schulz and Pfister[34]. Axially standing wave solutions,
called “ribbons,” have been observed by Tagget al. [35] in
the nonlinear regime and recently by Langenberget al. [36]
as the primary pattern from a supercritical Hopf bifurcation
in the basic flow.

The experimental setup of the Taylor-Couette system used
for this study consists of a viscous fluid confined in the gap
between two independently rotating concentric cylinders.
The inner cylinder is machined from stainless steel having a
radius of r i =s12.50±0.01dmm, while the outer cylinder is
made from optically polished glass with a radius ofro
=s25.00±0.01dmm. As a working fluid a silicon oil with the
kinematic viscosityn=10.2 cSt is used. The temperature of
the fluid is thermostatically controlled tos24.00±0.01d °C.
At top and bottom the fluid is confined by end plates which
are held fixed in the laboratory frame. The distance between
the plates defines the axial heightL of the flow which is
adjustable within an accuracy of 0.01 mm. Geometric param-
eters are the aspect ratioG=L /d, with gap widthd=ro−r i,
and the radius ratioh=r i / ro. The radius ratio is held fixed to
h=0.5 for all measurements and the maximum height of the
apparatus isL=250 mm which correspond to a maximum
aspect ratioG=20. As control parameters serve the Reynolds
number of the innersid and the outersod cylinder, Rei,o
=2pdri,oVi,o/n, whereVi,o denote the angular velocity of the
inner sid and the outersod cylinder, respectively. We utilize
laser Doppler velocimetry(LDV ) for measurements of the
flow velocity.

Standing waves have been found to supersede spiral vor-
tices as the first time-periodic pattern appearing in counter-
rotating Taylor-Couette flow from a Hopf bifurcation for suf-
ficiently small aspect ratio[19,36]. An axial velocity
distribution of a standing wave solution measured atG=7.3
for Rei =112.2 and Reo=−110 is shown Fig. 1(a). The nodal
structure in the distribution provides a clear evidence for a
standing wave pattern. A detailed description of this flow
state is given in[36]. In the nonlinear regime away from the
critical Reynolds number spiral vortices appear. As an ex-
ample the axial velocity distribution of a spiral vortex flow
measured atG=7.3,Rei =118.2, and Reo=−110 is repre-
sented in Fig. 1(c). Due to the traveling wave character of
spiral vortices the velocity distribution is almost featureless
as shown in Fig. 1(c) and described in detail by Schulz and
Pfister [34]. Spiral vortices are thus clearly distinguishable
from the standing waves.

The axial velocity distribution of a novel flow state is
depicted in Fig. 1(b). It has been measured for a Reynolds
number within the interval between standing waves shown in
Fig. 1(a) and spiral vortices shown in Fig. 1(c). The spatial

characteristic of the flow state is very similar to that of the
standing wave flow but with a crucial difference arising in
the axial middle of the cylinder. Here, the node that is
present in the case of standing waves has disappeared. The
velocity distribution is broadened. The broadening arises in
the distribution since a spatio-temporal modulation occurs in
the flow. The flow state is thus labeled modulated waves
(MW).

A time series of the axial velocity of MW recorded 1.2
mm above the axial midplane and at a distance of 1.5 mm
from the inner cylinder is shown in Fig. 2(a). In order to
visualize the fast dynamics of MW which corresponds to
standing waves a single period of the slow oscillation plotted
in (a) is depicted in Fig. 2(b). A time-delay reconstruction of
the attractor from time series(b) which is shown in Fig. 2(c)
and a Poincaré section from an attractor reconstructed from
time series(a) which is depicted in(d) demonstrate the qua-
siperiodic dynamics of MW. Thus the flow evolves dynami-
cally on aT2-torus. The time delayt=1.1 s is optimized with

FIG. 1. Axial distributions of axial velocity of(a) standing wave
SW0sG=7.3,Rei =112.2,Reo=−110d, (b) modulated wave MWsG
=7.3,Rei =115.3,Reo=−110d, and (c) traveling wave SPI sG
=7.3,Rei =118.2,Reo=−110d.

FIG. 2. (a) Axial velocity of a modulated wave measured 1.2
mm above the axial midplane of the system atG=7.3,Reo=−110
and Rei =114.5;(b) a single period of time series plotted in(a); (c)
quasiperiodic attractor reconstructed from time series(b) with a
time delayt=1.1 s;(d) Poincaré section of quasiperiodic attractor
reconstructed from time series(a) with a time delayt=1.1 s.
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respect to the experimental time series[37]. The axial mid-
plane does not allow an appropriate measurement of the dy-
namics on aT2-torus since the amplitude of standing waves
vanishes. The measurement off the midplane introduces an
anharmonic behavior of the low-frequency component in the
time series as can be seen in Fig. 2. However, the low-
frequency component is harmonic if measured directly in the
axial midplane. Further flow visualization and LDV mea-
surements in the axial midplane reveal that the modulation
results from a time-periodic axial displacement of the wave
pattern.

A measurement of the bifurcation diagram of counter-
rotating Taylor-Couette flow forG=7.3 and Reo=−110 is
shown in Fig. 3. As a measure of the bifurcation the mean of
the maxima of the axial velocity is recorded at a distance of
1.5 mm from the inner cylinder and 1.2 mm above the axial
midplane. The transition from the basic flow(BF) to the
standing wavessSW0d occurs via a supercriticial Hopf bifur-
cation, as shown in detail recently in[36]. Spiral vortices
(SPI) exist in this control parameter regime only as a second-
ary flow. The transition from SPI to SW0 occurs subcritically
at Rec=112.3 for decreasing Reynolds number as indicated
by an arrow in Fig. 3.

For increasing Reynolds number modulated waves(MW)
appear supercritically from standing wavessSW0d. Since
these waves are only stable within an interval of about one
Reynolds number the region of modulated waves have been
investigated in a detailed measurement plotted in Fig. 4. De-
spite the very small stability regime of modulated waves
(MW) evidence for a square-root behavior of the modulation
amplitude can be found in Fig. 4(a). A power-law behavior is
estimated to kmaxvzstdl~Î« with «=sRei −Rei,cd /Rei,c.
Moreover, the modulation period of the standing wave is
finite at onset as depicted in Fig. 4(b). These experimental
results provide evidence that modulated waves appear from

standing waves as a result of a supercritical Hopf bifurcation
at Rec=115.4. Such a behavior is in agreement with theory
of Hopf bifurcation with broken translation symmetry[19].

It can be seen in Fig. 4(a) that theT2-torus of modulated
waves disappears above Rec=115.8 and the flow undergoes a
transition to spiral vortices. This has been indicated by small
arrows in Fig. 3 as well as in Fig. 4(a). As shown in Fig. 3
the transition from spiral vortices to standing waves is hys-
teretic. Details on the nature of the transition from the
T2-torus formed by modulated waves(MW) to spiral vortices
(SPI) are represented in Fig. 4(b). It can be seen that the
oscillation period of MW increases significantly if the critical
Reynolds number is approached. This provides evidence for
the appearance of a homoclinic bifurcations from MW. A
homoclinic bifurcation from aT2-torus is an intrinsic part of
the theory of Hopf bifurcation with broken translation sym-
metry. Note, that the experimental accuracy limits the closest
distance to the critical point.

Qualitatively similar bifurcation behavior has been found
in the flow for different Reynolds number of the outer cylin-
der and for different aspect ratio. In Fig. 5 the dependence of
bifurcation points on the aspect ratioG in shown in a stability
diagram for Reo=−120. The critical points are obtained from
bifurcation diagrams similar to that shown in Figs. 3 and 4.
In Fig. 5 the supercritical Hopf bifurcation from basic flow to
SW0 is indicated by(P) while the supercritical Hopf bifur-
cation from SW0 to MW is depicted by(.). The quasiperi-
odic flow state(MW) occurs only forG,7.7 at Reo=−120.
For G.7.7 SW0 undergoes a direct transtion to SPI ath
with increasing Rei. There is strong evidence both from
theory [17,19] and from previous experimental studies on
standing waves[36] that this transition is due to a subcritical
symmetry-breaking bifurcation from SW0. The hysteretic
transition from SPI is indicated by(L) in Fig. 5. Merging of
Hopf bifurcation(.) and subcritical symmetry-breaking bi-
furcation (h) indicates the existence of a Takens-Bogdanov

FIG. 3. Bifurcation diagram measured atG=7.3 and Reo
=−110.s·d, (n), (.), and(s) represent the mean of the maxima of
the axial velocity of BF, SW0, MW, and SPI, respectively, recorded
1.2 mm above the axial midplane at a distance of 1.5 mm from the
inner cylinder.

FIG. 4. (a) Bifurcation diagram of modulated waves atG=7.3
and Reo=−110. (n), (.), and (s) represent the mean of the
maxima of the axial velocity of SW0, MW, and SPI, respectively;
(b) modulation period of the standing wave for the same set of
parameters.
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point atG=7.7 in the flow. Such a codimension-2 point gives
rise to a heteroclinic bifurcation in a perfectlyZ2-symmetric
and a homoclinic bifurcation in an imperfect experimental
system[5]. A Takens-Bogdanov point is an intrinsic part of
the theory[17,19] and provides thus further evidence that the
transition form MW to SPI is due to a homoclinic bifucation
at (s).

It has been found theoretically[20] that chaotic ho-
moclinic dynamics also result from Hopf bifurcation with
broken translational symmetry. Such a chaotic flow state is
found in the experiments in the vicinity of the homoclinic
bifurcation. A time series of a chaotic flow at Reo=−130 is
shown in Fig. 6(a). Chaos occurs in the modulation compo-
nent as indicated in a low-passed filtered version plotted in
Fig. 6(b). Further evidence of the chaotic nature of the flow
is given in Fig. 6(c) by a reconstruction of an attractor from
the filtered time series. An optimal time delay oft=50 s is
used[37]. A Poincaré section of an attractor reconstructed
from time series depicted in(a) with a time delayt=1.1 s is
shown in Fig. 6(d). The structure indicates the existence of a
low-dimensional chaotic attractor.

We have provided experimental evidence that modulated
waves, homoclinic bifurcation, Takens-Bogdanov point and

chaotic dynamics arise in a fluid flow from a Hopf bifurca-
tion with broken translation symmetry. Thus the behavior of
the fluid flow which is governed by the Navier-Stokes equa-
tion can be succesfully modeled by imperfection terms in the
normal form of the bifurcation even away from the first criti-
cal Reynolds number in the nonlinear regime. We are there-
fore able to show that the theory of Hopf bifurcation with
broken translational symmetry is robust and applicable to
Hopf bifurcations in a realistic fluid flow of finite spatial
extend.
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